Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
North Atlantic Deep Water (NADW), the return flow component of the Atlantic Meridional Overturning Circulation (AMOC), is a major inter-hemispheric ocean water mass with strong climate effects but the evolution of its source components on million-year timescales is poorly known. Today, two major NADW components that flow southward over volcanic ridges to the east and west of Iceland are associated with distinct contourite drift systems that are forming off the coast of Greenland and on the eastern flank of the Reykjanes (mid-Atlantic) Ridge. Here we provide direct records of the early history of this drift sedimentation based on cores collected during International Ocean Discovery Programme (IODP) Expeditions 395C and 395. We find rapid acceleration of drift deposition linked to the eastern component of NADW, known as Iceland–Scotland Overflow Water at 3.6 million years ago (Ma). In contrast, the Denmark Strait Overflow Water feeding the western Eirik Drift has been persistent since the Late Miocene. These observations constrain the long-term evolution of the two NADW components, revealing their contrasting independent histories and allowing their links with climatic events such as Northern Hemisphere cooling at 3.6 Ma, to be assessed.more » « lessFree, publicly-accessible full text available May 5, 2026
-
null (Ed.)Abstract In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations.more » « less
-
Abstract For over 50 years, cores recovered from ocean basins have generated fossil, lithologic, and chemical archives that have revolutionized fields within the earth sciences. Although scientific ocean drilling (SOD) data are openly available following each expedition, the formats for these data are heterogeneous. Furthermore, lithological, chronological, and paleobiological data are typically separated into different repositories, limiting researchers' abilities to discover and analyze integrated SOD data sets. Emphasis within Earth Sciences on Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles and the establishment of community‐led databases provide a pathway to unite SOD data and further harness the scientific potential of the investments made in offshore drilling. Here, we describe a workflow for compiling, cleaning, and standardizing key SOD records, and importing them into the Paleobiology Database and Macrostrat, systems with versatile, open data distribution mechanisms. These efforts are being carried out by the extending Ocean Drilling Pursuits (eODP) project. eODP has processed all of the lithological, chronological, and paleobiological data from one SOD repository, along with numerous other data sets that were never deposited in a database; these were manually transcribed from original reports. This compiled data set contains over 79,899 lithological units from 1,125 drilling holes from 422 sites. Over 26,000 fossil‐bearing samples, with 5,378 taxonomic entries from 13 biological groups, are placed within this lithologic spatiotemporal framework. All information is available via GitHub and Macrostrat's application programming interface, which renders data retrievable by a variety of parameters, including age, site, and lithology.more » « less
-
Abstract The meridional variability of the Subtropical Front (STF) in the Southern Hemisphere, linked to expansions or contractions of the Southern Ocean, may have played an important role in global ocean circulation by moderating the magnitude of water exchange at the Indian‐Atlantic Ocean Gateway, so called Agulhas Leakage. Here we present new biomarker records of upper water column temperature (and) and primary productivity (chlorins and alkenones) from marine sediments at IODP Site U1475 on the Agulhas Plateau, near the STF and within the Agulhas retroflection pathway. We use these multiproxy time‐series records from 1.4 to 0.3 Ma to examine implied changes in the upper oceanographic conditions at the mid‐Pleistocene transition (MPT, ca. 1.2–0.8 Ma). Our reconstructions, combined with prior evidence of migrations of the STF over the last 350 ka, suggest that in the Southwestern Indian Ocean the STF may have been further south from the Agulhas Plateau during the mid‐Pleistocene Interim State (MPIS, MIS 23–12) and reached its northernmost position during MIS 34–24 and MIS 10. Comparison to aGloborotalia menardii‐derived Agulhas Leakage reconstruction from the Cape Basin suggests that only the most extreme northward migrations of the STF are associated with reduced Agulhas Leakage. During the MPIS, STF migrations do not appear to control Agulhas Leakage variability, we suggest previously modeled shifting westerly winds may be responsible for the patterns observed. A detachment between STF migrations and Agulhas Leakage, in addition to invoking shifting westerly winds may also help explain changes in CO2ventilation seen during the MPIS.more » « less
-
Abstract The Pāpaku Fault Zone, drilled at International Ocean Discovery Program (IODP) Site U1518, is an active splay fault in the frontal accretionary wedge of the Hikurangi Margin. In logging‐while‐drilling data, the 33‐m‐thick fault zone exhibits mixed modes of deformation associated with a trend of downward decreasing density,P‐wave velocity, and resistivity. Methane hydrate is observed from ~30 to 585 m below seafloor (mbsf), including within and surrounding the fault zone. Hydrate accumulations are vertically discontinuous and occur throughout the entire logged section at low to moderate saturation in silty and sandy centimeter‐thick layers. We argue that the hydrate distribution implies that the methane is not sourced from fluid flow along the fault but instead by local diffusion. This, combined with geophysical observations and geochemical measurements from Site U1518, suggests that the fault is not a focused migration pathway for deeply sourced fluids and that the near‐seafloor Pāpaku Fault Zone has little to no active fluid flow.more » « less
An official website of the United States government
